This is an elementary page that collects work related to our group on hydrologic deep learning.
Resources
Notable Publications
- Liu, Jiangtao*, Yuchen Bian, and Chaopeng Shen. (2024). Probing the limit of hydrologic predictability with the Transformer network, Journal of Hydrology. doi: 10.1016/j.jhydrol.2024.131389
- Song, Yalan*, Piyaphat Chaemchuen*, Farshid Rahmani*, Wei Zhi, Li Li, Xiaofeng Liu, Elizabeth Boyer, Tadd Bindas*, Kathryn Lawson*, and Chaopeng Shen. (2024). Deep learning insights into suspended sediment concentrations across the conterminous United States: Strengths and limitations, Journal of Hydrology. doi: 10.1016/j.jhydrol.2024.131573
- Song, Yalan*, Wen-Ping Tsai*, Jonah Gluck**, Alan Rhoades, Colin Zarzycki, Rachel McCrary, Kathryn Lawson*, and Chaopeng Shen. (2024). LSTM-based data integration to improve snow water equivalent prediction and diagnose error sources. Journal of Hydrometeorology. doi:10.1175/JHM-D-22-0220.1
- Zhi, Wei, Wenyu Ouyang, Chaopeng Shen, and Li Li. (2023). Temperature as the predominant driver of dissolved oxygen in US rivers. Nature Water. doi: 10.1038/s44221-023-00038-z
- Dwivedi, Dipankar, Xingyuan Chen, Chaopeng Shen, and Harihar Rajaram. (2023). Advancing AI and machine learning beyond predictive capabilities, Eos (Editor's Vox -- non-peer reviewed). doi: 10.1029/2023EO235032
- Saha, Gourab, Farshid Rahmani*, Cibin Raj, Chaopeng Shen, and Li Li. (2023). A deep learning-based novel approach to generate continuous daily stream nitrate concentration for nitrate data-sparse watersheds, Science of the Total Environment. doi:10.1016/j.scitotenv.2023.162930
- Liu, Jiangtao*, David Hughes, Farshid Rahmani*, Kathryn Lawson*, and Chaopeng Shen. (2023). Evaluating a global soil moisture dataset from a multitask model (GSM3 v1.0) for current and emerging threats to crops, Geoscientific Model Development. doi: 10.5194/gmd-16-1553-2023
- Sadayappan, Kayalvizhi, Devon Kerins, Chaopeng Shen, and Li Li. (2022). Riverine nitrate concentrations predominantly driven by human, climate, and soil property in the Contiguous United States. Water Research. doi: 10.1016/j.watres.2022.119295
- Nagendra, Savinay**, Daniel Kifer, Benjamin Mirus, Te Pei**, Kathryn Lawson*, Srikanth Banagere Manjunatha, Weixin Li*, Hien Nguyen, Tong Qiu, Sarah Tran, and Chaopeng Shen. (2022). Constructing a large-scale landslide database across heterogeneous environments using task-specific model updates, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. doi: 10.1109/JSTARS.2022.3177025
- Fang, Kuai*, Daniel Kifer, Dapeng Feng*, Kathryn Lawson*, and Chaopeng Shen. (2022). The data synergy effects of time-series deep learning models in hydrology, Water Resources Research. doi: 10.1029/2021WR029583
- Liu, Jiangtao*, Farshid Rahmani*, Kathryn Lawson*, and Chaopeng Shen. (2022). A multiscale deep learning model for soil moisture integrating satellite and in-situ data, Geophysical Research Letters. doi: 10.1029/2021GL096847
- Rahmani, Farshid*, Chaopeng Shen, Samantha Oliver, Kathryn Lawson*, and Alison Appling. (2021). Deep learning approaches for improving prediction of daily stream temperature in data-scarce, unmonitored, and dammed basins, Hydrological Processes. doi: 10.1002/hyp.14400.
- Feng, Dapeng*, Kathryn Lawson*, and Chaopeng Shen. (2021). Mitigating prediction error of deep learning streamflow models in large data-sparse regions with ensemble modeling and soft data, Geophysical Research Letters. doi: 10.1029/2021GL092999
- Ouyang, Wenyu**, Kathryn Lawson*, Dapeng Feng*, Lei Ye, Chi Zhang, and Chaopeng Shen. (2021). Continental-scale streamflow modeling of basins with reservoirs: towards a coherent deep-learning-based strategy, Journal of Hydrology. doi: 10.1016/j.jhydrol.2021.126455
- Shen, Chaopeng, Xingyuan Chen, and Eric Laloy. (2021). Editorial: Broadening the use of machine learning in hydrology, Frontiers in Water -Water and Hydrocomplexity. doi: 10.3389/frwa.2021.681023
- Ma, Kai**, Dapeng Feng*, Kathryn Lawson*, Wen-Ping Tsai*, Chuan Liang, Xiaorong Huang, Ashutosh Sharma*, and Chaopeng Shen. (2021). Transferring hydrologic data across continents -- leveraging data-rich regions to improve hydrologic prediction in data-sparse regions, Water Resources Research. doi: 10.1029/2020WR028600
- Zhi, Wei, Dapeng Feng*, Wen-Ping Tsai*, Gary Sterle, Adrian Harpold, Chaopeng Shen, and Li Li. (2021). From hydrometeorology to river water quality: can a deep learning model predict dissolved oxygen at the continental scale? Environmental Science & Technology. doi: 10.1021/acs.est.0c06783
- Rahmani, Farshid*, Kathryn Lawson*, Wenyu Ouyang**, Alison Appling, Samantha Oliver, and Chaopeng Shen. (2021). Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data, Environmental Research Letters. doi: 10.1088/1748-9326/abd501
- Fang, Kuai*, Daniel Kifer, Kathryn Lawson*, and Chaopeng Shen. (2020). Evaluating the potential and challenges of an uncertainty quantification method for long short-term memory models for soil moisture predictions, Water Resources Research. doi: 10.1029/2020WR028095
- Feng, Dapeng*, Kuai Fang*, and Chaopeng Shen. (2020). Enhancing streamflow forecast and extracting insights using continental-scale long-short term memory networks with data integration, Water Resources Research. doi: 10.1029/2019WR026793
- Fang, Kuai*, and Chaopeng Shen. (2020). Near-real-time forecast of satellite-based soil moisture using long short-term memory with an adaptive data integration kernel, Journal of Hydrometeorology, JHM-D-19-0169.1. doi:10.1175/JHM-D-19-0169.1
- Fang, K*, M. Pan, and CP. Shen. (2018). The value of SMAP for long-term soil moisture estimation with the help of deep learning, Transactions on Geoscience and Remote Sensing, 57(4), 2221-2233. doi: 10.1109/TGRS.2018.2872131
- Shen, CP.. (2018). A trans-disciplinary review of deep learning research and its relevance for water resources scientists, Water Resources Research. 54(11), 8558-8593. doi: 10.1029/2018WR022643
- Shen, CP., Laloy, E., Albert, A., Chang, F.-J., Elshorbagy, Bales, J., A., Ganguly, S., Hsu, K.-L., Kifer, D., Fang, Z., Fang, K.*, Li, D., Li, X., and Tsai, W.-P.* (2018). HESS Opinions: Incubating deep-learning-powered hydrologic science advances as a community, Hydrol. Earth Syst. Sci., 22, 5639–5656. doi: 10.5194/hess-22-5639-2018
- Shen, CP.. (2018). Deep learning: A next-generation big-data approach for hydrology, Eos (Editor's vox), 99. https://doi.org/10.1029/2018EO095649
- Fang, K.*, CP. Shen, D. Kifer, and X. Yang. (2017). Prolongation of SMAP to spatio-temporally seamless coverage of Continental US using a deep learning neural network, Geophysical Research Letters. doi: 10.1002/2017GL075619
Hydrologic Deep Learning
|
||
|
||
|


