Need a tour guide for the papers? Try this Reading Guide by Topic for MHPI papers  

Preprints and submitted papers

  1. Doaa Aboelyazeed*, Chonggang xu, Lianhong Gu, et al. Inferring plant acclimation and improving model generalizability with differentiable physics-informed machine learning of photosynthesis
  2. Liu, Jiangtao*, et al., The value of terrain pattern, high-resolution data and ensemble modeling for landslide susceptibility prediction
  3. Song* et al., High-resolution national-scale water modeling is enhanced by multiscale differentiable physics-informed machine learning
  4. Song* et al., Improving Physics-informed, Differentiable Hydrologic Models for Capturing Unseen Extreme Events
  5. Song* et al., Prominent impacts of hydrologic scaling laws on climate risks
  6. Knoben et al., Technical note: How many models do we need to simulate hydrologic processes across large geographical domains
  7. Genes of AI liberate our inquiry into the global water cycle
  8. Abdolmedhi Behroozi*, et al., Advanced Fourier Neural Operator To Solve Differential Equations With Highly Accurate Physical Concepts
  9. Sawadekar* et al., Hydrology-informed interpretable precipitation data fusion with a differentiable hydrologic model
  10. Reinecke et al., Uncertainties are a Guiding Light for Global Water Model Advancement 
  11. He et al., Global Underestimation of River Obstructions 
  12. Maharjan et al., Comparison of Deep Learning (DL) Models to Simulate Discharge in Ungauged Glacierized High Mountain Regions of the World  
  13. Khoshkalam**, et al.,  Does Grouping Watersheds by Hydrographic Regions Offer Any Advantages in Fine-tuning Transfer Learning Model 
  14. Yang et al., Global Daily Discharge Estimation Based on Grid-Scale Long Short-Term Memory (LSTM) Model and River Routing.
  15. Yang et al., Phenology

Journal Publications

(* indicates advisee authors. ** indicates extensively-advised collaborating authors or summer institute students. Underline indicates corresponding author)

  1. Zhi, Wei et al., Increasing Phosphorus Loss Despite Widespread Concentration Decline in US River, Proceedings of the National Academy of Sciences (PNAS), (2024, Provisionally Accepted) 
  2. Shuyu  Chang**, Zahra Ghahremani**, Laura Manuel**, Mohammad Erfani**, Chaopeng Shen, Sagy Cohen, Kimberly Van Meter, Jennifer L Pierce, Ehab A Meselhe, Erfan Goharian, The geometry of flow: Advancing predictions of river geometry with multi-model machine learning, Water Resources Research (2024), doi: 10.1029/2023WR036733  
  3. Dapeng Feng*, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu*, Ming Pan, Kathryn Lawson*, and Chaopeng Shen, Deep Dive into Global Hydrologic Simulations: Harnessing the Power of Deep Learning and Physics-informed Differentiable Models (δHBV-globe1.0-hydroDL),  Geoscientific Model Development (2024), doi: 10.5194/gmd-17-7181-2024
  4. Yalan Song*, Piyaphat Chaemchuen*, Farshid Rahmani*, Wei Zhi, Li Li, Xiaofeng Liu, Elizabeth Boyer, Tadd Bindas*, Kathryn Lawson*, Chaopeng Shen, Deep learning insights into suspended sediment concentrations across the conterminous United States: Strengths and limitations, Journal of Hydrology (2024), doi: 10.1016/j.jhydrol.2024.131573 
  5. Md Abdullah Al Mehedi**, Shah Saki**, Krutikkumar Patel**, Chaopeng Shen, Sagy Cohen, Virginia Smith, Adnan Rajib, Emmanouil Anagnostou, Tadd Bindas*, Kathryn Lawson*, Spatiotemporal Variability of Channel Roughness and Its Substantial Impacts on Flood Modeling Errors, Earths' Future (2024), doi: 10.1029/2023EF004257
  6. Song, Yalan*, Wouter Knoben, Martyn P. Clark, Dapeng Feng*, Kathryn Lawson, and Chaopeng Shen, When ancient numerical demons meet physics-informed machine learning: adjoint-based gradients for implicit differentiable modeling, Hydrology and Earth System Sciences (2024), doi: hess-28-3051-2024
  7.  Jiangtao Liu*, Yuchen Bian, Chaopeng Shen, Probing the limit of hydrologic predictability with the Transformer network, Journal of Hydrology (2024), doi: 10.1016/j.jhydrol.2024.131389
  8. Peter Reichert, Kai Ma**, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng*, and Chaopeng Shen, Metamorphic Testing of Machine Learning and Conceptual Hydrologic Models, Hydrology and Earth System Sciences (2024), doi: 10.5194/hess-28-2505-2024
  9. Bindas, Tadd*, Wen-Ping Tsai*, Jiangtao Liu*, Farshid Rahmani*, Dapeng Feng*, Yuchen Bian and Chaopeng Shen, Improving river routing using a differentiable Muskingum-Cunge model and physics-informed machine learning, Water Resources Research (2024), doi: 10.1029/2023WR035337, Data Release
  10. Saha, Gourab, Cibin Raj, Jonathan Duncan and Chaopeng Shen, Performance evaluation of deep learning based stream nitrate concentration prediction model to fill stream nitrate data gaps at low-frequency nitrate monitoring basinsJournal of Environmental Management (2024), doi:10.1016/j.jenvman.2024.120721
  11. Liu, Xiaofeng, Yalan Song and Chaopeng Shen, Bathymetry Inversion using a Deep-Learning-Based Surrogate for Shallow Water Equations Solvers, Water Resources Research (2024), doi: 10.1029/2023WR035890, preprint           
  12. Yongen Lin; Dagang Wang; Jinxin Zhu; Wei Sun; Chaopeng Shen; Wei Shangguan, Development of objective function-based ensemble model for streamflow forecasts, Journal of Hydrology (2024), doi:  10.1016/j.jhydrol.2024.130861
  13. Kai Ma, Chaopeng Shen, Ziyue Xu & Daming He, Transfer learning framework for streamflow prediction in large-scale transboundary catchments: Sensitivity analysis and applicability in data-scarce basinsJournal of Geographical Sciences (2024), doi: 10.1007/s11442-024-2235-x  
  14. Yalan Song*, Wen-Ping Tsai*, Jonah Gluck**, Alan Rhoades, Colin Zarzycki, Rachel McCrary, Kathryn Lawson* and Chaopeng Shen, LSTM-based data integration to improve snow water equivalent prediction and diagnose error sources. Journal of Hydrometeorology (2024), doi:10.1175/JHM-D-22-0220.1
  15. Chaopeng Shen, Alison P. Appling, Pierre Gentine, Toshiyuki Bandai, Hoshin Gupta, Alexandre Tartakovsky, Marco Baity-Jesi, Fabrizio Fenicia, Daniel Kifer, Li Li, Xiaofeng Liu, Wei Ren, Yi Zheng, Ciaran J. Harman, Martyn Clark, Matthew Farthing, Dapeng Feng*, Praveen Kumar, Doaa Aboelyazeed*, Farshid Rahmani*, Yalan Song*, Hylke E. Beck, Tadd Bindas*, Dipankar Dwivedi, Kuai Fang, Marvin Höge, Chris Rackauckas, Binayak Mohanty, Tirthankar Roy, Chonggang Xu and Kathryn Lawson*,  Differentiable modelling to unify machine learning and physical models for geosciences. Nature Reviews Earth and Environment (2023) , doi: 10.1038/s43017-023-00450-9. Open-Access Online PDF 
  16. Zhi, Wei, Wenyu Ouyang, Chaopeng Shen, Li Li, Temperature as the predominant driver of dissolved oxygen in US rivers. Nature Water (2023), doi: 10.1038/s44221-023-00038-z 
  17. Rahmani, Farshid*, Alison Appling, Kathryn Lawson* and Chaopeng Shen. Identifying structural priors in a hybrid differentiable model for stream water temperature modeling, Water Resources Research (2023), doi: 10.1029/2023WR034420. Data Release
  18. Dipankar Dwivedi, Xingyuan Chen, Chaopeng Shen and Harihar Rajaram,  Advancing AI and Machine Learning Beyond Predictive Capabilities, Eos (Editor's Vox -- non-peer reviewed), doi: 10.1029/2023EO235032
  19. Aboelyazeed, Doaa*, Chonggang Xu, Forrest M. Hoffman, Alex W. Jones, Chris Rackauckas and Chaopeng Shen, A differentiable, physics-informed ecosystem modeling and learning framework for large-scale inverse problems: Demonstration with photosynthesis simulations, Biogeosciences (2023). doi: 10.5194/bg-20-2671-2023   
  20. Feng Dapeng*, Hylke Beck, Kathryn Lawson* and Chaopeng Shen, The suitability of differentiable, learnable hydrologic models, Hydrology and Earth System Sciences (2023), doi: 10.5194/hess-27-2357-2023   
  21. Nikunj K. Mangukiya, Ashutosh Sharma, Chaopeng Shen,  How to enhance hydrological predictions in hydrologically distinct watersheds of the Indian subcontinent? Hydrological Processes (2023), doi: 10.1002/hyp.14936  
  22. Pei, Te, Tong Qiu and Chaopeng Shen, Applying Knowledge-Guided Machine Learning to Slope Stability Prediction Journal of Geotechnical and Geoenvironmental Engineering (2023), doi: 10.1061/JGGEFK.GTENG-11053
  23. Yingying Yao, Yufeng Zhao, Xin Li, Dapeng Feng*, Chaopeng Shen, Chuankun Liu, Xingxing Kuang, and Chunmiao Zheng, Can Transfer Learning Improve Hydrological Predictions in the Alpine Regions? Journal of Hydrology (2023), doi: 10.1016/j.jhydrol.2023.130038 
  24. Song, Yalan,  Xiaofeng Liu and Chaopeng Shen, A Surrogate Model for Shallow Water Equations Solvers with Deep Learning, Journal of Hydraulic Engineering (2023), doi: 10.1061/JHEND8.HYENG-13190     
  25. Louise Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa, Hybrid forecasting: using statistics and machine learning to integrate predictions from dynamical models, Hydrology and Earth System Sciences (2023), doi: 10.5194/hess-27-1865-2023
  26. Yegane Khoshkalam**, Alain N. Rousseau, Farshid Rahmani*, Chaopeng Shen, Kian Abbasnezhadi, Applying Transfer Learning Techniques to Enhance the Accuracy of Streamflow Prediction Produced by Long Short-term Memory Networks with Data Integration, Journal of Hydrology (2023), doi: 10.1016/j.jhydrol.2023.129682
  27. Michael Palese, Te Pei, Tong Qiu, Allan M. Zarembski, Chaopeng Shen, and Joseph Palese, Hazard assessment framework for statistical analysis of cut slopes using track inspection videos and geospatial information, Georisk (2023), doi: 10.1080/17499518.2023.2222369
  28. Saha, Gourab, Farshid Rahmani*, Cibin Raj, Chaopeng Shen, and Li Li. A deep learning-based novel approach to generate continuous daily stream nitrate concentration for nitrate data-sparse watersheds, Science of the Total Environment (2023), doi:10.1016/j.scitotenv.2023.162930
  29. Liu, Jiangtao*, David Hughes, Farshid Rahmani*, Kathryn Lawson* and Chaopeng Shen, Evaluating a Global Soil Moisture dataset from a Multitask Model (GSM3 v1.0) for current and emerging threats to crops, Geoscientific Model Development (2023), doi: 10.5194/gmd-16-1553-2023
  30. Feng, Dapeng*, Jiangtao Liu*, Kathryn Lawson* and Chaopeng Shen, Differentiable, learnable, regionalized process-based models with physical outputs can approach state-of-the-art hydrologic prediction accuracy, Water Resources Research (2022), doi:10.1029/2022WR032404 
  31. Kayalvizhi Sadayappan, Devon Kerins, Chaopeng Shen, Li Li, Riverine nitrate concentrations predominantly driven by human, climate, and soil property in the Contiguous United States. Water Research (2022), doi: 10.1016/j.watres.2022.119295
  32. Xi Chen, Sheng Wang, Hongkai Gao, Jiaxu Huang,  Chaopeng Shen; Qingli Li; Honggang Qi; Laiwen Zheng; Min Liu, Comparison of deep learning models and a typical process-based model in glacio-hydrology simulation, Journal of Hydrology (2022) , doi: 10.1016/j.jhydrol.2022.128562
  33. Olukunle O. Owolabi, Kathryn Lawson*, Sanhita Sengupta, Yingsi Huang, Lan Wang, Chaopeng Shen, Mila Getmansky Sherman, Deborah A. Sunter, A Robust Statistical Analysis of the Role of Hydropower on the System Electricity Price and Price Volatility, Environmental Research Communications (2022), doi: 10.1088/2515-7620/ac7b74,  preprint
  34. Savinay Nagendra**, Daniel Kifer, Benjamin Mirus, Te Pei**, Kathryn Lawson*, Srikanth Banagere Manjunatha, Weixin Li*, Hien Nguyen, Tong Qiu, Sarah Tran, and Chaopeng Shen, Constructing a Large-scale Landslide Database Across Heterogeneous Environments Using Task-Specific Model Updates, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (2022), doi: 10.1109/JSTARS.2022.3177025,  preprint.
  35. Kuai Fang*, Daniel Kifer, Dapeng Feng*, Kathryn Lawson* and Chaopeng ShenThe data synergy effects of time-series deep learning models in hydrology, Water Resources Research (2022), doi: 10.1029/2021WR029583,  preprint.
  36. Jiangtao Liu*, Farshid Rahmani*, Kathryn Lawson* and Chaopeng Shen, A multiscale deep learning model for soil moisture integrating satellite and in-situ data, Geophysical Research Letters (2022), doi: 10.1029/2021GL096847 
  37. Binxiao Liu, Qiuhong Tang *, Gang Zhao, Liang Gao, Chaopeng Shen, Baoxiang Pan, Physics-guided long short-term memory network for streamflow and flood simulations in the Lancang-Mekong River Basin, Water (2022), doi: 10.3390/w14091429
  38. Wen-Ping Tsai*, Dapeng Feng*, Ming Pan, Hylke Beck, Yuan Yang, Kathryn Lawson*, Jiangtao Liu*, and Chaopeng Shen. From calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific modeling. Nature Communications, (2021). doi: 10.1038/s41467-021-26107-z.
  39. Farshid Rahmani*, Chaopeng Shen, Samantha Oliver, Kathryn Lawson* and Alison Appling, Deep learning approaches for improving prediction of daily stream temperature in data-scarce, unmonitored, and dammed basins, Hydrological Processes (2021), doi: 10.1002/hyp.14400.
  40. Kang Xie; Pan Liu; Jianyun Zhang; Dongyang Han; Guoqing Wang; Chaopeng Shen. Physics-guided deep learning for rainfall-runoff modeling by considering extreme events and monotonic relationships. Journal of Hydrology (2021),  doi: 10.1016/j.jhydrol.2021.127043
  41. Feng, DP.*, K. Lawson and CP. Shen, Mitigating prediction error of deep learning streamflow models in large data-sparse regions with ensemble modeling and soft data, Geophysical Research Letters, doi: 10.1029/2021GL092999 (2021)
  42. Fuxin Zhu, Xin Li, Jun Qin, Kun Yang, Lan Cuo, Wenjun Tang, Chaopeng Shen, Integration of multi-source data to estimate downward longwave radiation based on deep neural networks, IEEE Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2021.3094321
  43. Judy P. Che-Castaldo, Rémi Cousin, Stefani Daryanto, Grace Deng, Mei-Ling E. Feng, Rajesh K. Gupta, Dezhi Hong, Ryan M. McGranaghan, Olukunle O. Owolabi, Tianyi Qu, Wei Ren, Toryn L. J. Schafer, Ashutosh Sharma*, Chaopeng Shen, Mila Getmansky Sherman, Deborah A. Sunter, Lan Wang, David S. Matteson, Critical Risk Indicators (CRIs) for the electric power grid: A survey and discussion of interconnected effects, Environment Systems and Decisions, (2021) preprint link
  44. Ouyang WY.**, K. Lawson*, DP. Feng*, L. Ye, Chi Zhang, CP. Shen, Continental-scale streamflow modeling of basins with reservoirs: towards a coherent deep-learning-based strategy, Journal of Hydrology, doi: 10.1016/j.jhydrol.2021.126455 (2021), preprint link
  45. Shen, CP., XY. Chen and E. Laloy, Editorial: Broadening the Use of Machine Learning in Hydrology, Frontiers in Water -Water and Hydrocomplexity, doi: 10.3389/frwa.2021.681023 (2021)
  46. Ma, K.**, DP. Feng*, K. Lawson*, W-P Tsai*, C. Liang, XR. Huang, A. Sharma*, and CP. Shen, Transferring hydrologic data across continents -- leveraging data-rich regions to improve hydrologic prediction in data-sparse regions, Water Resources Research, doi: 10.1029/2020WR028600 (2021) pre-review preprint
  47. Zhi, W., DP. Feng*, WP Tsai*, G. Sterle, A. Harpold, CP. Shen and L. Li, From hydrometeorology to river water quality: can a deep learning model predict dissolved oxygen at the continental scale? Environmental Science & Technology , doi: 10.1021/acs.est.0c06783 (2021) pre-review preprint
  48. Rahmani, F.*, K. Lawson*, WY. Ouyang**, A. Appling, S. Oliver and CP. Shen, Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data, Environmental Research Letters, doi: 10.1088/1748-9326/abd501 (2021)
  49. Fang, K.*, D. Kifer, K. Lawson* and CP. Shen, Evaluating the potential and challenges of an uncertainty quantification method for long short-term memory models for soil moisture predictions, Water Resources Research, doi: 10.1029/2020WR028095 (2020) preprint link
  50. Tsai, W-P.*, K. Fang*, X. Ji*, K. Lawson*, CP. Shen, Revealing causal controls of storage-streamflow relationships with a data-centric Bayesian framework combining machine learning and process-based modeling. Frontiers in Water-Water and Hydrocomplexity, doi:10.3389/frwa.2020.583000 (2020)
  51. Feng, DP*, K. Fang* and CP. Shen, Enhancing streamflow forecast and extracting insights using continental-scale long-short term memory networks with data integration, Water Resources Research, doi: 10.1029/2019WR026793 (2020) preprint
  52. Fang, K.* and CP. Shen, Near-real-time forecast of satellite-based soil moisture using long short-term memory with an adaptive data integration kernel, Journal of Hydrometeorology, JHM-D-19-0169.1, doi:10.1175/JHM-D-19-0169.1 (2020)
  53. Fang, K*, XY. Ji*, CP. Shen, N. Ludwig, P. Godfrey, T. Mahjabin, and C. Doughty, Combining a land surface model with groundwater model calibration to assess the impacts of groundwater pumping in a mountainous desert basin, Advances in Water Resources (2019), 130, 12-28, doi: 10.1016/j.advwatres.2019.05.008
  54. Ji, XY*, L. Lesack, JM. Melack, S. Wang*, WJ. Riley, CP. Shen, Seasonal and inter-annual patterns and controls of hydrological fluxes in an Amazon floodplain lake with a surface-subsurface processes model, Water Resources Research, 55(4), 3056-3075, doi: 10.1029/2018WR023897 (2019)
  55. Sun, N*, K. Fang*, CP. Shen, Toward a Priori Evaluation of Relative Worth of Head and Conductivity Data as Functions of Data Densities in Inverse Groundwater Modeling, Water (2019), 11(6), doi: 10.3390/w11061202
  56. Fan, YR., et al., Hillslope Hydrology in Global Change Research and Earth System Modeling, Water Resources Research, 55(2), 1737-1772, doi:10.1029/2018WR023903 (2019)
  57. Shen, CP., Laloy, E., Albert, A., Chang, F.-J., Elshorbagy, Bales, J., A., Ganguly, S., Hsu, K.-L., Kifer, D., Fang, Z., Fang, K.*, Li, D., Li, X., and Tsai, W.-P.*, HESS Opinions: Incubating deep-learning-powered hydrologic science advances as a community, Hydrol. Earth Syst. Sci., 22, 5639–5656, doi: 10.5194/hess-22-5639-2018, (2018)
  58. Fang, K*, M. Pan, and CP. Shen, The value of SMAP for long-term soil moisture estimation with the help of deep learning, Transactions on Geoscience and Remote Sensing, 57(4), 2221-2233, doi: 10.1109/TGRS.2018.2872131  (2018)
  59. Shen, CP., A trans-disciplinary review of deep learning research and its relevance for water resources scientists, Water Resources Research. 54(11), 8558-8593, doi: 10.1029/2018WR022643 (2018)
  60. Shen, CP., Deep learning: A next-generation big-data approach for hydrology, Eos (Editor's vox) , 99, https://doi.org/10.1029/2018EO095649 (2018)
  61. Wang, S-Y., R. Gilles, O-Y. Chung, CP. Shen, Cross-Basin Decadal Climate Regime connecting the Colorado River and the Great Salt Lake, Journal of Hydrometeorology, doi: 10.1175/JHM-D-17-0081.1 (2018)
  62. Ji, XY.* and Shen, CP., The introspective may achieve more: enhancing existing Geoscientific models with native-language emulated structural reflection, Computers and Geosciences, doi: 10.1016/j.cageo.2017.09.014 (2018)
  63. Fang, K.*, CP. Shen, D. Kifer and X. Yang, Prolongation of SMAP to Spatio-temporally Seamless Coverage of Continental US Using a Deep Learning Neural Network, Geophysical Research Letters, doi: 10.1002/2017GL075619, preprint accessible at: arXiv:1707.06611 (2017)
  64. Fang, K* and CP. Shen, Full-flow-regime storage-streamflow correlation patterns provide insights into hydrologic functioning over the continental US, Water Resources Research, doi: 10.1002/2016WR020283 (2017)
  65. Niu, Jie, CP. Shen, J. Chambers, JM. Melack and WJ. Riley, Interannual Variation in Hydrologic Budgets in an Amazonian Watershed with a Coupled Subsurface - Land Surface Process Model. Journal of Hydrometeorology, doi: 10.1175/JHM-D-17-0108.1 (2017)
  66. Fang, K.*, CP. Shen, JB. Fisher and J. Niu. Improving Budyko curve-based estimates of long-term water partitioning using hydrologic signatures from GRACE, Water Resources Research, doi: 10.1002/2016WR018748 (2016)
  67. Liu, X., Y. Chen, CP. Shen, Coupled Two-dimensional Surface Flow and Three-dimensional Sub-surface Flow Modeling for the Drainage of Permeable Road Pavement, Journal of Hydrologic Engineering, doi: 10.1061/(ASCE)HE.1943-5584.0001462 (2016)
  68. Shen, CP., SL. Wang* and X. Liu, Geomorphological significance of at-many-stations hydraulic geometry, Geophysical Research Letters, Vol. 43, No. 8, doi: 10.1002/2016GL068364 (2016)
  69. Fatichi, S., ER. Vivoni, FL. Ogden, VY. Ivanov, B. Mirus, D. Gochis, CW. Downer, M. Camporese, JH. Davison, B. Ebel, N. Jones, J. Kim, G. Mascaro, R. Niswonger, P. Restrepo, R. Rigon, CP. Shen, M. Sulis, and D. Tarboton, An overview of current applications, challenges, and future trends in distributed process-based models in hydrology, Journal of Hydrology, doi:10.1016/j.jhydrol.2016.03.026 (2016)
  70. Shen, CP., WJ. Riley, KR. Smithgall*, JM. Melack and K. Fang*, The fan of influence of streams and channel feedbacks to simulated land surface water and carbon dynamics, Water Resources Research, doi: 10.1002/2015WR018086 (2016)
  71. Pau, GHS, CP. Shen, WJ. Riley and Y. Liu, Accurate and efficient prediction of fine-resolution hydrologic and carbon dynamic simulations from coarse-resolution models, Water Resources Research, doi10.1002/2015WR017782 (2016)
  72. Ji, XY*, CP. Shen and WJ. Riley, Temporal evolution of soil moisture statistical fractal and controls by soil texture and regional groundwater flow. Advances in Water Resources, 86, 155–169. doi:10.1016/j.advwatres.2015.09.027 (2015)
  73. Clark, M. P., Y. Fan, D. M. Lawrence, J. C. Adam, D. Bolster, D. J. Gochis, R. P. Hooper, M. Kumar, L. R. Leung, D. S. Mackay, R. M. Maxwell, CP. Shen, S. C. Swenson, and X. Zeng, Improving the representation of hydrologic processes in Earth System Models, Water Resources Research, doi:10.1002/2015WR017096 (2015)
  74. Niu, J., CP. Shen, S-G Li and M.S. Phanikumar, Quantifying Storage Changes in Regional Great Lakes Watersheds Using a Coupled Subsurface - Land Surface Process Model and GRACE, MODIS Products, Water Resources Research, doi: 10.1002/2014WR015589 (2014)
  75. Riley, WJ. and CP. Shen: Characterizing coarse-resolution watershed soil moisture heterogeneity using fine-scale simulations, Hydrol. Earth Syst. Sci., 18(7), 2463–2483, doi:10.5194/hess-18-2463-2014 (2014).
  76. Trebotich, D., M.F. Adams, S. Molins, C.I. Steefel and CP. Shen, High Resolution Simulation of Pore Scale Reactive Transport Processes Associated with Carbon Sequestration, Computing in Science and Engineering, Nov/Dec Issue, (2014), doi: 10.1109/MCSE.2014.77
  77. Molins, S., D. Trebotich, J.B. Ajo-Franklin, T.J. Ligocki, CP. Shen and C.I. Steefel, Pore-scale controls on Calcite dissolution rates from flow-through laboratory and numerical experiments, Environmental Science & Technology, doi:10.1021/es5013438 (2014)
  78. Shen, CP., J. Niu and K. Fang*, Quantifying the Effects of Data Integration Algorithms on the Outcomes of a Subsurface - Land Surface Processes Model, Environmental Modelling & Software., doi: 10.1016/j.envsoft.2014.05.006 (2014)
  79. Maxwell, RM., M. Putti, SB. Meyerhoff, J. Delfs, I. Ferguson, V. Ivanov, J. Kim, O. Kolditz, S. Kollet, M. Kumar, S. lopez, J. Niu, C. Paniconi, Y. Park, MS. Phanikumar, CP. Shen, E. Sudicky and M. Sulis, Surface-subsurface model inter-comparison: A first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resources Research, 50(2), pp. 1531-1439, doi: 10.1002/2013WR013725 (2014)
  80. Shen, CP., J. Niu and M.S. Phanikumar, Evaluating Controls on Coupled Hydrologic and Vegetation Dynamics in a Humid Continental Climate Watershed Using a Subsurface - Land Surface Processes Model, Water Resources Research, 49(5), pp. 2552 - 2572, doi: 10.1002/wrcr.20189 (2013)
  81. Molins S., D. Trebotich, C.I. Steefel and CP. Shen, An Investigation of the Effect of Pore Scale Flow on Average Geochemical Reaction Rates Using Direct Numerical Simulation, Water Resources Research, 48(3), W03527, doi:10.1029/ 2011WR011404 (2012)
  82. Shen, CP., J.-M. Qiu and A. Christlieb, Adaptive Mesh Refinement Based on High order Finite Difference WENO Scheme for Multi-scale Simulations, Journal of Computational Physics, 230(10), pp. 3780 - 3802, doi: 10.1016/j.jcp.2011.02.008 (2011)
  83. Shen, CP. and M.S. Phanikumar, A Process-Based, Distributed Hydrologic Model Based on a Large-Scale Method for Surface - Subsurface Coupling, Advances in Water Resources, 33(12), pp. 1524 - 1541, doi: 10.1016/j.advwatres.2010.09.002 (2010)
  84. Shen, CP., J. Niu, E.J. Andersen and M.S. Phanikumar, Estimating Longitudinal Dispersion in Rivers Using Acoustic Doppler Current Profilers, Advances in Water Resources, 33(6), pp. 615-623, doi: 10.1016/j.advwatres.2010.02.008 (2010)
  85. Shen, CP. and M.S. Phanikumar, An Efficient Space-Fractional Dispersion Approximation for Stream Solute Transport Modeling, Advances in Water Resources, 32(10), pp. 1482-1494, doi: 10.1016/j.advwatres.2009.07.01 (2009)
  86. Shen, CP., M.S. Phanikumar, T.T. Fong, I. Aslam, S.L. Molloy and J.B. Rose, Evaluating Bacteriophage P22 as a Tracer in a Complex Surface Water System: The Grand River, Michigan, Environmental Science & Technology , Vol. 42, No. 7, doi: 10.1021/es702317t (2008)
  87. Phanikumar,M.S., I. Aslam, CP. Shen, D.T. Long and T.C. Voice, Separating Surface Storage from Hyporheic Retention in Natural Streams Using Wavelet Decomposition of Acoustic Doppler Current Profiles, Water Resources Research, Vol. 43, No. 5, doi: 10.1029 / 2006WR005104 (2007)

 

 

Non-journal

  1. Fang, Kuai*, Chaopeng Shen and Daniel Kifer, Evaluating aleatoric and epistemic uncertainties of time series deep learning models for soil moisture predictions, International Conference on Machine Learning (ICML) 2019 Workshop (double-blind review). 
  2. Water Resources Chapter, in Shortle J. et al., Pennsylvania Climate Change Impact Assessment Update (2015)
  3. Shen, CP. and K. Lawson, Chapter 19. Applications of Deep Learning in Hydrology. Deep learning for the Earth Sciences: With Applications and R, Second Edition. Editors: Gustau Camps-Valls, Devis Tuia, Xiao Xiang Zhu, Markus Reichstein
  4. Savinay Nagendra**, Daniel Kifer, Chaopeng Shen. ThreshNet: Segmentation Refinement Inspired by Region-Specific Thresholding, https://arxiv.org/abs/2211.06560